Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.435
1.
Nat Commun ; 15(1): 3875, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719800

The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.


Cytokinins , Indoleacetic Acids , Phylogeny , Plant Growth Regulators , Plant Growth Regulators/metabolism , Indoleacetic Acids/metabolism , Cytokinins/metabolism , Viridiplantae/metabolism , Viridiplantae/genetics , Ethylenes/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Cyclopentanes/metabolism , Biological Evolution , Chlorophyta/metabolism , Chlorophyta/genetics , Signal Transduction
2.
Nat Commun ; 15(1): 4032, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740753

Animal regeneration involves coordinated responses across cell types throughout the animal body. In endosymbiotic animals, whether and how symbionts react to host injury and how cellular responses are integrated across species remain unexplored. Here, we study the acoel Convolutriloba longifissura, which hosts symbiotic Tetraselmis sp. green algae and can regenerate entire bodies from tissue fragments. We show that animal injury causes a decline in the photosynthetic efficiency of the symbiotic algae, alongside two distinct, sequential waves of transcriptional responses in acoel and algal cells. The initial algal response is characterized by the upregulation of a cohort of photosynthesis-related genes, though photosynthesis is not necessary for regeneration. A conserved animal transcription factor, runt, is induced after injury and required for acoel regeneration. Knockdown of Cl-runt dampens transcriptional responses in both species and further reduces algal photosynthetic efficiency post-injury. Our results suggest that the holobiont functions as an integrated unit of biological organization by coordinating molecular networks across species through the runt-dependent animal regeneration program.


Photosynthesis , Regeneration , Symbiosis , Animals , Regeneration/physiology , Chlorophyta/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
3.
Article En | MEDLINE | ID: mdl-38717925

A Gram-stain-negative, facultative aerobic, catalase- and oxidase-positive, non-motile, non-flagellated, and coccus-shaped bacterium, strain J2-16T, isolated from a marine green alga, was characterized taxonomically. Strain J2-16T grew at 20-40 °C (optimum, 30 °C), pH 6.0-10.0 (optimum, pH 7.0), and 1.0-4.0 % (w/v) NaCl (optimum, 3.0 %). Menaquinone-7 was identified as the sole respiratory quinone, and major fatty acids (>5 %) were C18 : 1 ω9c, iso-C14 : 0, C14 : 0, anteiso-C15 : 0, C18 : 0, C16 : 0, and C17 : 1 ω8c. The polar lipids of strain J2-16T consisted of phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids, and three unidentified lipids. The genome size of strain J2-16T was 5384 kb with a G+C content of 52.0 mol%. Phylogenetic analyses based on 16S rRNA gene and 120 protein marker sequences revealed that strain J2-16T formed a distinct phyletic lineage within the genus Coraliomargarita, closely related to Coraliomargarita sinensis WN38T and Coraliomargarita akajimensis DSM 45221T with 16S rRNA gene sequence similarities of 95.7 and 94.4 %, respectively. Average nucleotide identity and digital DNA-DNA hybridization values between strain J2-16T and Coraliomargarita species were lower than 71.2 and 20.0 %, respectively. The phenotypic, chemotaxonomic, and molecular features support that strain J2-16T represents a novel species of the genus Coraliomargarita, for which the name Coraliomargarita algicola sp. nov. is proposed. The type strain is J2-16T (=KACC 22590T=JCM 35407T).


Bacterial Typing Techniques , Base Composition , Chlorophyta , DNA, Bacterial , Fatty Acids , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , DNA, Bacterial/genetics , Nucleic Acid Hybridization , Seawater/microbiology
4.
Environ Monit Assess ; 196(6): 508, 2024 May 04.
Article En | MEDLINE | ID: mdl-38703265

To cope with the water shortage in Sous Massa region of Morocco, agricultural producers in the region have resorted to different types of water supply basins, known as "irrigation basins" but the phenomenon of eutrophication has hindered the continuity of agricultural productivity by altering the quality of the water used for irrigation on the one hand, and causing economic damage to agricultural producers due to the clogging of the water pumping network on the other. We began by characterising the physico-chemical quality of the water to determine the causes of its high nutrient content, then we determined the taxonomy of the algal species in the irrigation basins to which we had access. A qualitative study of the water in the irrigation basins in order to better explain the inventory obtained from the taxonomic identification of the algal biomass collected, which proved the existence of new species, not previously identified, characterising the freshwaters of the Moroccan region, is under the scope of this work. The species studied belong mainly to the following groups: green algae (11 genera of Chlorophyta and 7 genera of Charophyta), blue algae (7 genera of Cyanobacteria), brown algae (7 genera of Diatoms), and one genus of Euglenophyta.


Agricultural Irrigation , Chlorophyta , Environmental Monitoring , Eutrophication , Environmental Monitoring/methods , Morocco , Cyanobacteria , Phaeophyceae , Diatoms , Water Supply , Microalgae , Fresh Water
5.
Geobiology ; 22(3): e12598, 2024.
Article En | MEDLINE | ID: mdl-38700417

Tonian (ca. 1000-720 Ma) marine environments are hypothesised to have experienced major redox changes coinciding with the evolution and diversification of multicellular eukaryotes. In particular, the earliest Tonian stratigraphic record features the colonisation of benthic habitats by multicellular macroscopic algae, which would have been powerful ecosystem engineers that contributed to the oxygenation of the oceans and the reorganisation of biogeochemical cycles. However, the paleoredox context of this expansion of macroalgal habitats in Tonian nearshore marine environments remains uncertain due to limited well-preserved fossils and stratigraphy. As such, the interdependent relationship between early complex life and ocean redox state is unclear. An assemblage of macrofossils including the chlorophyte macroalga Archaeochaeta guncho was recently discovered in the lower Mackenzie Mountains Supergroup in Yukon (Canada), which archives marine sedimentation from ca. 950-775 Ma, permitting investigation into environmental evolution coincident with eukaryotic ecosystem evolution and expansion. Here we present multi-proxy geochemical data from the lower Mackenzie Mountains Supergroup to constrain the paleoredox environment within which these large benthic macroalgae thrived. Two transects show evidence for basin-wide anoxic (ferruginous) oceanic conditions (i.e., high FeHR/FeT, low Fepy/FeHR), with muted redox-sensitive trace metal enrichments and possible seasonal variability. However, the weathering of sulfide minerals in the studied samples may obscure geochemical signatures of euxinic conditions. These results suggest that macroalgae colonized shallow environments in an ocean that remained dominantly anoxic with limited evidence for oxygenation until ca. 850 Ma. Collectively, these geochemical results provide novel insights into the environmental conditions surrounding the evolution and expansion of benthic macroalgae and the eventual dominance of oxygenated oceanic conditions required for the later emergence of animals.


Biological Evolution , Fossils , Oxidation-Reduction , Geologic Sediments/chemistry , Geologic Sediments/analysis , Eukaryota , Canada , Ecosystem , Chlorophyta
6.
Int J Biol Macromol ; 267(Pt 1): 131506, 2024 May.
Article En | MEDLINE | ID: mdl-38604422

Marine green algae produce sulfated polysaccharides with diverse structures and a wide range of biological activities. This study aimed to enhance the biotechnological potential of sulfated heterorhamnan (Gb1) from Gayralia brasiliensis by chemically modifying it for improved or new biological functions. Using controlled Smith Degradation (GBS) and O-alkylation with 3-chloropropylamine, we synthesized partially water-soluble amine derivatives. GBS modification increase sulfate groups (29.3 to 37.5 %) and α-l-rhamnose units (69.9 to 81.2 mol%), reducing xylose and glucose, compared to Gb1. The backbone featured predominantly 3- and 2-linked α-l-rhamnosyl and 2,3- linked α-l-rhamnosyl units as branching points. Infrared and NMR analyses confirmed the substitution of hydroxyl groups with aminoalkyl groups. The modified compounds, GBS-AHCs and GBS-AHK, exhibited altered anticoagulant properties. GBS-AHCs showed reduced effectiveness in the APTT assay, while GBS-AHK maintained a similar anticoagulant activity level to Gb1 and GBS. Increased nitrogen content and N-alkylation in GBS-AHCs compared to GBS-AHK may explain their structural differences. The chemical modification proposed did not enhance its anticoagulant activity, possibly due to the introduction of amino groups and a positive charge to the polymer. This characteristic presents new opportunities for investigating the potential of these polysaccharides in various biological applications, such as antimicrobial and antitumoral activities.


Anticoagulants , Chlorophyta , Mannans , Seaweed , Sulfates , Anticoagulants/pharmacology , Anticoagulants/chemistry , Anticoagulants/chemical synthesis , Chlorophyta/chemistry , Seaweed/chemistry , Sulfates/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemical synthesis , Humans , Deoxy Sugars/chemistry , Deoxy Sugars/pharmacology
7.
Mar Pollut Bull ; 202: 116373, 2024 May.
Article En | MEDLINE | ID: mdl-38636343

To develop an effective method to eliminate green macroalgae attached to Neopyropia aquaculture nets, we explored the influence of mixed acid solution on the photosynthetic fluorescence characteristics of Ulva spp. (green macroalgae) and Neopyropia yezoensis (red macroalgae) from Dafeng and Rudong aquaculture areas in Jiangsu Province, China. Treatment with mixed acid solution (0.0475 % hydrochloric acid:citric acid (pH 2.0) at a ratio of 4:3) for 60 s caused death of Ulva spp., but did not affect N. yezoensis. Additionally, a mixed acid solution effectively eliminated green macroalgae from Neopyropia aquaculture rafts and the marine environment remained unaffected. Hence, the application of mixed acid solution treatment has demonstrated significant efficacy in eradicating green macroalgae adhered to Neopyropia aquaculture rafts, thus presenting a promising strategy for mitigating green macroalgae proliferation in Neopyropia aquaculture areas and curbing their contribution to green tides.


Aquaculture , Edible Seaweeds , Porphyra , Seaweed , Ulva , China , Chlorophyta
8.
Cells ; 13(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38667301

Phytohormones, particularly cytokinin trans-zeatin (tZ), were studied for their impact on the green alga Desmodesmus armatus under cadmium (Cd) stress, focusing on growth, metal accumulation, and stress response mechanisms. Using atomic absorption spectroscopy for the Cd level and high-performance liquid chromatography for photosynthetic pigments and phytochelatins, along with spectrophotometry for antioxidants and liquid chromatography-mass spectrometry for phytohormones, we found that tZ enhances Cd uptake in D. armatus, potentially improving phycoremediation of aquatic environments. Cytokinin mitigates Cd toxicity by regulating internal phytohormone levels and activating metal tolerance pathways, increasing phytochelatin synthase activity and phytochelatin accumulation essential for Cd sequestration. Treatment with tZ and Cd also resulted in increased cell proliferation, photosynthetic pigment and antioxidant levels, and antioxidant enzyme activities, reducing oxidative stress. This suggests that cytokinin-mediated mechanisms in D. armatus enhance its capacity for Cd uptake and tolerance, offering promising avenues for more effective aquatic phycoremediation techniques.


Antioxidants , Cadmium , Chlorophyta , Zeatin , Cadmium/toxicity , Zeatin/metabolism , Zeatin/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Chlorophyta/drug effects , Chlorophyta/metabolism , Oxidative Stress/drug effects , Photosynthesis/drug effects , Phytochelatins/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism
9.
J Water Health ; 22(4): 785-796, 2024 Apr.
Article En | MEDLINE | ID: mdl-38678430

Degradation of water quality is an emerging issue in many developing countries. In this context, industrial and domestic effluents heavily contaminate the coast of Moknine Continental Sebkha in Tunisia. The present study aimed to biomonitor the seawater quality of the Moknine Continental Sebkha coast using physicochemical and ecotoxicological approaches. The ecotoxicological assessment was performed using three species representing different trophic levels, namely Vibrio fischeri, Selenastrum capricornutum, and Lepidium sativum. In the physicochemical analysis such as BOD (biochemical oxygen demand), COD (chemical oxygen demand), TSS (total suspended solids), TOC (total organic carbon), NO3- (nitrate), AOX (adsorbable organic halogen), the recorded levels of pH and total suspended solids did not comply with the Tunisian standard (NT.09.11/1983). The ecotoxicological data confirmed that the tested water samples displayed toxicity to two test indicators L. sativum and S. capricornutum. A targeted chemical screening of the Moknine Continental Sebkha coast previously performed revealed the presence of total mercury, four phthalate acid esters, and one non-phthalate plasticizer, a fact that could explain the observed ecotoxicological effects and therefore might harm the biotic area and the health of the surrounding population.


Aliivibrio fischeri , Environmental Monitoring , Seawater , Water Pollutants, Chemical , Tunisia , Aliivibrio fischeri/drug effects , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Seawater/chemistry , Ecotoxicology , Lepidium sativum/drug effects , Chlorophyta/drug effects
10.
Int J Mol Sci ; 25(7)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38612712

Tetraselmis chuii is an EFSA-approved novel food and dietary supplement with increasing use in nutraceutical production worldwide. This study investigated the neuroprotective potential of bioactive compounds extracted from T. chuii using green biobased solvents (ethyl acetate, AcOEt, and cyclopentyl methyl ether, CPME) under pressurized liquid extraction (PLE) conditions and supercritical fluid extraction (SFE). Response surface optimization was used to study the effect of temperature and solvent composition on the neuroprotective properties of the PLE extracts, including anticholinergic activity, reactive oxygen/nitrogen species (ROS/RNS) scavenging capacity, and anti-inflammatory activity. Optimized extraction conditions of 40 °C and 34.9% AcOEt in CPME resulted in extracts with high anticholinergic and ROS/RNS scavenging capacity, while operation at 180 °C and 54.1% AcOEt in CPME yielded extracts with potent anti-inflammatory properties using only 20 min. Chemical characterization revealed the presence of carotenoids (neoxanthin, violaxanthin, zeaxanthin, α- and ß-carotene) known for their anti-cholinesterase, antioxidant, and anti-inflammatory potential. The extracts also exhibited high levels of omega-3 polyunsaturated fatty acids (PUFAs) with a favorable ω-3/ω-6 ratio (>7), contributing to their neuroprotective and anti-inflammatory effects. Furthermore, the extracts were found to be safe to use, as cytotoxicity assays showed no observed toxicity in HK-2 and THP-1 cell lines at or below a concentration of 40 µg mL-1. These results highlight the neuroprotective potential of Tetraselmis chuii extracts, making them valuable in the field of nutraceutical production and emphasize the interest of studying new green solvents as alternatives to conventional toxic solvents.


Chlorophyta , Fatty Acids, Omega-3 , Microalgae , Reactive Oxygen Species , Cholinergic Antagonists , Dietary Supplements , Anti-Inflammatory Agents/pharmacology , Solvents
11.
Planta ; 259(5): 111, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38578466

MAIN CONCLUSION: The combined photoinhibitory and PSII-reaction centre quenching against light stress is an important mechanism that allows the green macroalga Ulva rigida to proliferate and form green tides in coastal ecosystems. Eutrophication of coastal ecosystems often stimulates massive and uncontrolled growth of green macroalgae, causing serious ecological problems. These green tides are frequently exposed to light intensities that can reduce their growth via the production of reactive oxygen species (ROS). To understand the physiological and biochemical mechanisms leading to the formation and maintenance of green tides, the interaction between inorganic nitrogen (Ni) and light was studied. In a bi-factorial physiological experiment simulating eutrophication under different light levels, the bloom-forming green macroalga Ulva rigida was exposed to a combination of ecologically relevant nitrate concentrations (3.8-44.7 µM) and light intensities (50-1100 µmol photons m-2 s-1) over three days. Although artificial eutrophication (≥ 21.7 µM) stimulated nitrate reductase activity, which regulated both nitrate uptake and vacuolar storage by a feedback mechanism, nitrogen assimilation remained constant. Growth was solely controlled by the light intensity because U. rigida was Ni-replete under oligotrophic conditions (3.8 µM), which requires an effective photoprotective mechanism. Fast declining Fv/Fm and non-photochemical quenching (NPQ) under excess light indicate that the combined photoinhibitory and PSII-reaction centre quenching avoided ROS production effectively. Thus, these mechanisms seem to be key to maintaining high photosynthetic activities and growth rates without producing ROS. Nevertheless, these photoprotective mechanisms allowed U. rigida to thrive under the contrasting experimental conditions with high daily growth rates (12-20%). This study helps understand the physiological mechanisms facilitating the formation and persistence of ecologically problematic green tides in coastal areas.


Chlorophyta , Edible Seaweeds , Seaweed , Ulva , Ecosystem , Nitrates , Reactive Oxygen Species , Nitrogen
12.
Sci Rep ; 14(1): 8340, 2024 04 09.
Article En | MEDLINE | ID: mdl-38594439

The community structure and co-occurrence pattern of eukaryotic algae in Yuncheng Salt Lake were analyzed based on marker gene analysis of the 18S rRNA V4 region to understand the species composition and their synergistic adaptations to the environmental factors in different salinity waters. The results showed indicated that the overall algal composition of Yuncheng Salt Lake showed a Chlorophyta-Pyrrophyta-Bacillariophyta type structure. Chlorophyta showed an absolute advantage in all salinity waters. In addition, Cryptophyta dominated in the least saline waters; Pyrrophyta and Bacillariophyta were the dominant phyla in the waters with salinity ranging from 13.2 to 18%. Picochlorum, Nannochloris, Ulva, and Tetraselmis of Chlorophyta, Biecheleria and Oxyrrhis of Pyrrophyta, Halamphora, Psammothidium, and Navicula of Bacillariophyta, Guillardia and Rhodomonas of Cryptophyta were not observed in previous surveys of the Yuncheng Salt Lake, suggesting that the algae are undergoing a constant turnover as the water environment of the Salt Lake continues to change. The network diagram demonstrated that the algae were strongly influenced by salinity, NO3-, and pH, changes in these environmental factors would lead to changes in the algal community structure, thus affecting the stability of the network structure.


Chlorophyta , Diatoms , Dinoflagellida , Lakes/chemistry , Phytoplankton , Salinity , Chlorophyta/genetics , China
13.
PLoS Genet ; 20(4): e1011218, 2024 Apr.
Article En | MEDLINE | ID: mdl-38557755

Symbiomonas scintillans Guillou et Chrétiennot-Dinet, 1999 is a tiny (1.4 µm) heterotrophic microbial eukaryote. The genus was named based on the presence of endosymbiotic bacteria in its endoplasmic reticulum, however, like most such endosymbionts neither the identity nor functional association with its host were known. We generated both amplification-free shotgun metagenomics and whole genome amplification sequencing data from S. scintillans strains RCC257 and RCC24, but were unable to detect any sequences from known lineages of endosymbiotic bacteria. The absence of endobacteria was further verified with FISH analyses. Instead, numerous contigs in assemblies from both RCC24 and RCC257 were closely related to prasinoviruses infecting the green algae Ostreococcus lucimarinus, Bathycoccus prasinos, and Micromonas pusilla (OlV, BpV, and MpV, respectively). Using the BpV genome as a reference, we assembled a near-complete 190 kbp draft genome encoding all hallmark prasinovirus genes, as well as two additional incomplete assemblies of closely related but distinct viruses from RCC257, and three similar draft viral genomes from RCC24, which we collectively call SsVs. A multi-gene tree showed the three SsV genome types branched within highly supported clades with each of BpV2, OlVs, and MpVs, respectively. Interestingly, transmission electron microscopy also revealed a 190 nm virus-like particle similar the morphology and size of the endosymbiont originally reported in S. scintillans. Overall, we conclude that S. scintillans currently does not harbour an endosymbiotic bacterium, but is associated with giant viruses.


Chlorophyta , Giant Viruses , Giant Viruses/genetics , Phylogeny , Genome, Viral/genetics , Chlorophyta/genetics , Metagenomics , Bacteria/genetics
14.
Environ Microbiol ; 26(4): e16620, 2024 Apr.
Article En | MEDLINE | ID: mdl-38627038

Actinomycetota, associated with macroalgae, remains one of the least explored marine niches. The secondary metabolism of Actinomycetota, the primary microbial source of compounds relevant to biotechnology, continues to drive research into the distribution, dynamics, and metabolome of these microorganisms. In this study, we employed a combination of traditional cultivation and metagenomic analysis to investigate the diversity of Actinomycetota in two native macroalgae species from the Portuguese coast. We obtained and taxonomically identified a collection of 380 strains, which were distributed across 12 orders, 15 families, and 25 genera affiliated with the Actinomycetia class, with Streptomyces making up approximately 60% of the composition. Metagenomic results revealed the presence of Actinomycetota in both Chondrus crispus and Codium tomentosum datasets, with relative abundances of 11% and 2%, respectively. This approach identified 12 orders, 16 families, and 17 genera affiliated with Actinomycetota, with minimal overlap with the cultivation results. Acidimicrobiales emerged as the dominant actinobacterial order in both macroalgae, although no strain affiliated with this taxonomic group was successfully isolated. Our findings suggest that macroalgae represent a hotspot for Actinomycetota. The synergistic use of both culture-dependent and independent approaches proved beneficial, enabling the identification and recovery of not only abundant but also rare taxonomic members.


Actinobacteria , Chlorophyta , Seaweed , Humans , Seaweed/microbiology , Portugal , Bacteria
15.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38673930

Marine algal lectins specific for high-mannose N-glycans have attracted attention because they strongly inhibit the entry of enveloped viruses, including influenza viruses and SARS-CoV-2, into host cells by binding to high-mannose-type N-glycans on viral surfaces. Here, we report a novel anti-influenza virus lectin (named HBL40), specific for complex-type N-glycans, which was isolated from a marine green alga, Halimeda borneensis. The hemagglutination activity of HBL40 was inhibited with both complex-type N-glycan and O-glycan-linked glycoproteins but not with high-mannose-type N-glycan-linked glycoproteins or any of the monosaccharides examined. In the oligosaccharide-binding experiment using 26 pyridylaminated oligosaccharides, HBL40 only bound to complex-type N-glycans with bi- and triantennary-branched sugar chains. The sialylation, core fucosylation, and the increased number of branched antennae of the N-glycans lowered the binding activity with HBL40. Interestingly, the lectin potently inhibited the infection of influenza virus (A/H3N2/Udorn/72) into NCI-H292 cells at IC50 of 8.02 nM by binding to glycosylated viral hemagglutinin (KD of 1.21 × 10-6 M). HBL40 consisted of two isolectins with slightly different molecular masses to each other that could be separated by reverse-phase HPLC. Both isolectins shared the same 16 N-terminal amino acid sequences. Thus, HBL40 could be useful as an antivirus lectin specific for complex-type N-glycans.


Antiviral Agents , Chlorophyta , Lectins , Polysaccharides , Polysaccharides/pharmacology , Polysaccharides/chemistry , Chlorophyta/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Lectins/pharmacology , Lectins/chemistry , Lectins/metabolism , Lectins/isolation & purification , Humans , Animals , Dogs , Madin Darby Canine Kidney Cells , Influenza A Virus, H3N2 Subtype/drug effects
16.
J Agric Food Chem ; 72(17): 10005-10013, 2024 May 01.
Article En | MEDLINE | ID: mdl-38626461

Dunaliella bardawil is a marine unicellular green algal that produces large amounts of ß-carotene and is a model organism for studying the carotenoid synthesis pathway. However, there are still many mysteries about the enzymes of the D. bardawil lycopene synthesis pathway that have not been revealed. Here, we have identified a CruP-like lycopene isomerase, named DbLyISO, and successfully cloned its gene from D. bardawil. DbLyISO showed a high homology with CruPs. We constructed a 3D model of DbLyISO and performed molecular docking with lycopene, as well as molecular dynamics testing, to identify the functional characteristics of DbLyISO. Functional activity of DbLyISO was also performed by overexpressing gene in both E. coli and D. bardawil. Results revealed that DbLyISO acted at the C-5 and C-13 positions of lycopene, catalyzing its cis-trans isomerization to produce a more stable trans structure. These results provide new ideas for the development of a carotenoid series from engineered bacteria, algae, and plants.


Chlorophyceae , Intramolecular Lyases , Lycopene , cis-trans-Isomerases , Algal Proteins/genetics , Algal Proteins/metabolism , Algal Proteins/chemistry , Amino Acid Sequence , Carotenoids/metabolism , Carotenoids/chemistry , Chlorophyceae/enzymology , Chlorophyceae/genetics , Chlorophyceae/chemistry , Chlorophyceae/metabolism , Chlorophyta/enzymology , Chlorophyta/genetics , Chlorophyta/chemistry , Chlorophyta/metabolism , cis-trans-Isomerases/genetics , cis-trans-Isomerases/metabolism , cis-trans-Isomerases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Lycopene/metabolism , Lycopene/chemistry , Molecular Docking Simulation , Sequence Alignment
17.
Food Chem ; 449: 139165, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38574520

Microalgae are considered as a potential source of bioactive compounds to be used in different fields including food and pharmaceutical industry. In this context, fatty acid esters of hydroxy-fatty acids (FAHFA) are emerging as a new class of compounds with anti-inflammatory and anti-diabetic properties. An existing gap in the field of algal research is the limited knowledge regarding the production of these compounds. Our research questions aimed to determine whether the microalga H. pluvialis can synthesize FAHFA and whether the production levels of these compounds are increased when cultivated in a CO2-rich environment. To answer these questions, we used a LC-QTOF/MS method for the characterization of FAHFA produced by H. pluvialis while an LC-MS/MS method was used for their quantitation. The cultivation conditions of H. pluvialis, which include the utilization of CO2, can result in a 10-50-fold increase in FAHFA production.


Carbon Dioxide , Fatty Acids , Microalgae , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Microalgae/chemistry , Microalgae/metabolism , Microalgae/growth & development , Fatty Acids/chemistry , Fatty Acids/metabolism , Tandem Mass Spectrometry , Chlorophyta/chemistry , Chlorophyta/growth & development , Chlorophyta/metabolism
18.
Curr Microbiol ; 81(5): 115, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38483599

The diversity of bacteria associated with alpine lichens was profiled. Lichen samples belonging to the Umbilicariaceae family, commonly known as rock tripe lichens, were gathered from two distinct alpine fellfields: one situated on Mt. Brennkogel located in the Eastern European Alps (Austria), and the other on Mt. Stanley located in the Rwenzori mountains of equatorial Africa (Uganda). The primary aim of this research was to undertake a comparative investigation into the bacterial compositions, and diversities, identifying potential indicators and exploring their potential metabolisms, of these lichen samples. Bulk genomic DNA was extracted from the lichen samples, which was used to amplify the 18S rRNA gene by Sanger sequencing and the V3-V4 region of the 16S rRNA gene by Illumina Miseq sequencing. Examination of the fungal partner was carried out through the analysis of 18S rRNA gene sequences, belonging to the genus Umbilicaria (Ascomycota), and the algal partner affiliated with the lineage Trebouxia (Chlorophyta), constituted the symbiotic components. Analyzing the MiSeq datasets by using bioinformatics methods, operational taxonomic units (OTUs) were established based on a predetermined similarity threshold for the V3-V4 sequences, which were assigned to a total of 26 bacterial phyla that were found in both areas. Eight of the 26 phyla, i.e. Acidobacteriota, Actinomycota, Armatimonadota, Bacteroidota, Chloroflexota, Deinococcota, Planctomycetota, and Pseudomonadota, were consistently present in all samples, each accounting for more than 1% of the total read count. Distinct differences in bacterial composition emerged between lichen samples from Austria and Uganda, with the OTU frequency-based regional indicator phyla, Pseudomonadota and Armatimonadota, respectively. Despite the considerable geographic separation of approximately 5430 km between the two regions, the prediction of potential metabolic pathways based on OTU analysis revealed similar relative abundances. This similarity is possibly influenced by comparable alpine climatic conditions prevailing in both areas.


Ascomycota , Chlorophyta , Lichens , Lichens/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Phylogeny , Bacteria/genetics , Ascomycota/genetics , Chlorophyta/genetics , Africa
19.
Mar Biotechnol (NY) ; 26(2): 230-242, 2024 Apr.
Article En | MEDLINE | ID: mdl-38502428

Antibiotics are widely used in aquaculture to treat the bacterial diseases. However, the improper use of antibiotics could lead to environmental pollution and development of resistance. As a safe and eco-friendly alternative, antimicrobial peptides (AMPs) are commonly explored as therapeutic agents. In this study, a mutant strain of Tetraselmis subcordiformis containing AMP NZ2114 was developed and used as an oral drug delivery system to reduce the use of antibiotics in turbot (Scophthalmus maximus) aquaculture. The gut, kidney, and liver immune-related genes and their effects on gut digestion and bacterial communities in turbot fed with NZ2114 were evaluated in an 11-day feeding experiment. The results showed that compared with the group fed with wild-type T. subcordiformis, the group fed with T. subcordiformis transformants containing NZ2114 was revealed with decreased levels of both pro-inflammatory factors (TNF-α and IL-1ß), inhibitory effect on Staphylococcus aureus, Vibrio parahaemolyticus, and Vibrio splendidus demonstrated by the in vitro simulation experiments, and increased richness and diversity of the gut microbiota of turbot. In conclusion, our study provided a novel, beneficial, and low-cost method for controlling bacteria in turbot culture through the oral drug delivery systems.


Flatfishes , Microalgae , Animals , Flatfishes/immunology , Flatfishes/genetics , Flatfishes/microbiology , Administration, Oral , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Gastrointestinal Microbiome/drug effects , Aquaculture , Chlorophyta , Vibrio/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Liver/metabolism , Liver/drug effects , Staphylococcus aureus/drug effects
20.
Poult Sci ; 103(5): 103591, 2024 May.
Article En | MEDLINE | ID: mdl-38471224

The goals of the current research are to ascertain the impacts of Dunaliella salina (DS) on quail growth, carcass criteria, liver and kidney functions, lipid profile, and immune response. Two hundred and forty 7-day-old quail chicks were divided equally into 4 separate groups with 6 replicates with 10 birds each. The groups were as follows: 1) control diet (the basal feed without DS), 2) control diet enriched with 0.25 g DS/kg, 3) control diet enriched with 0.50 g DS/kg, and 4) control diet enriched with 1.00 g DS/kg. Results elucidated that the birds which consumed 0.5 and 1 g DS/kg diet performed better than other birds in terms of live body weight (LBW), body weight gain (BWG), and feed conversion ratio (FCR). There were no significant changes in feed intake (FI) and carcass characteristics due to different dietary DS levels. Compared to the control group, DS-treated groups had better lipid profile (low total cholesterol and LDL values and high HDL values) and immune response (complement 3 values). The quails consumed feeds with different levels of DS had greater (P < 0.038) C3 compared to control. Adding 0.5 and 1 g DS/kg lowered blood concentrations of triglycerides and total protein (TP) values. The high level of DS (1 g/kg) had higher albumin values and lower AST values than other groups (P < 0.05). The creatinine values were at the lowest levels in the group consumed 0.50 g DS/kg feed. No changes (P > 0.05) were demonstrated among experimental groups in the ALT, urea, and lysozyme values. In conclusion, adding D. salina to growing quail diets enhanced growth, immune system, blood lipid profile, and kidney and liver function.


Animal Feed , Diet , Dietary Supplements , Animals , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Microalgae/chemistry , Coturnix/growth & development , Coturnix/physiology , Coturnix/immunology , Lipids/blood , Random Allocation , Chlorophyta/chemistry , Animal Nutritional Physiological Phenomena/drug effects , Dose-Response Relationship, Drug , Male
...